Specialization of Motivic Hodge-chern Classes

نویسندگان

  • JÖRG SCHÜRMANN
  • J. SCHÜRMANN
چکیده

In this paper we give a proof of the fact, that the motivic Hodge-Chern class transformation MHCy and Hirzebruch class transformation MHTy∗ for mixed Hodge modules and strictly specializable filtered D-modules commute with specialization in the algebraic and in a suitable complex analytic context. Here specialization in the Hodgeand D-module context means the corresponding nearby cycles defined in terms of the V -filtration of Malgrange-Kashiwara. This generalizes a corresponding specialization result of Verdier about MacPherson’s Chern class transformation c∗.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hirzebruch classes and motivic Chern classes for singular (complex) algebraic varieties

In this paper we study some new theories of characteristic homology classes of singular complex algebraic varieties. First we introduce a natural transformation Ty : K0(var/X) → H∗(X) ⊗ Q[y] commuting with proper pushdown, which generalizes the corresponding Hirzebruch characteristic. Here K0(var/X) is the relative Grothendieck group of complex algebraic varieties over X as introduced and studi...

متن کامل

Characteristic classes of mixed Hodge modules

This paper is an extended version of an expository talk given at the workshop “Topology of Stratified Spaces” at MSRI in September 2008. It gives an introduction and overview about recent developments on the interaction of the theories of characteristic classes and mixed Hodge theory for singular spaces in the complex algebraic context. It uses M. Saito’s deep theory of mixed Hodge modules as a...

متن کامل

Characteristic Classes of Complex Hypersurfaces

The Milnor-Hirzebruch class of a locally complete intersection X in an algebraic manifold M measures the difference between the (Poincaré dual of the) Hirzebruch class of the virtual tangent bundle of X and, respectively, the Brasselet-Schürmann-Yokura (homology) Hirzebruch class of X. In this note, we calculate the Milnor-Hirzebruch class of a globally defined algebraic hypersurface X in terms...

متن کامل

Notes on absolute Hodge classes

Absolute Hodge classes first appear in Deligne’s proof of the Weil conjectures for K3 surfaces in [14] and are explicitly introduced in [16]. The notion of absolute Hodge classes in the singular cohomology of a smooth projective variety stands between that of Hodge classes and classes of algebraic cycles. While it is not known whether absolute Hodge classes are algebraic, their definition is bo...

متن کامل

Verdier Specialization via Weak Factorization

Let X ⊂ V be a closed embedding, with V r X nonsingular. We define a constructible function ψX,V on X, agreeing with Verdier’s specialization of the constant function 1V when X is the zero-locus of a function on V . Our definition is given in terms of an embedded resolution of X; the independence on the choice of resolution is obtained as a consequence of the weak factorization theorem of [AKMW...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009